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\ Abstract
The steady-state distribution function is obtained for electrons

initially emittéd from a poin’; source into a neutral gas and Wﬁich subse~
guently drift under the influence of a uniform dc electric f'ield while
undergoing elastic collisions with the gas atoms. The ugual approxi-
mations are retained of regarding the distribution function as ’glr_r_lo_sjmy,
spherical in velocity space and of regarding the fractional energy gain
or loss by an electron upon collision as small. However, the terms in
the Boltzmann transport equation involving spatial derivatives of the
distribution, which are usually assumed small in comparison to the
field and collision terms, are treated exactly. The distribution function
is given as a sum of energy modes, each of which decay with distance
from the source[, The lowest of these modes is the far-distant distribution,
while the higherVones, which decrease more rapidly with distance, describe
the decay of the initial source energy distribution. The complete distri-
bution is obtained in terms of known functions in the case of an energy
independent collision frequency, whereas in the energy independent
cross section case, only the lowest mode is obtained. The far-distant
part of the distribution function is compared with the usual approximate
expression which is obtained when the gradient terms ‘are considered small
and which is expressed as the density times a normalized energy function,

It is shown, that when the gradient terms are correctly considered, the

far~distant distribution in energy becomes position dependent. Furthermore,

T
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Abstract (Cont.)
the deviation from the approximate theory becomes larger, the further
the electrons are off the geometrical axis. This position dependence
is most important when the electron energy is large in comparison to
thermal energies. The interpretation of Townsend method for the
determination of the ratio of the diffusion coefficient to the mobility,
D/;..t, is re~examined on the basis of this more exact theory. Itis
shown that the error in D/p, that results from using the conventional
interpretation of this method under typical experimental conditions is

never more than about 20%.



I. INTRODUCTION

It is usually assumed that electrons which drift and diffuse
through a gas under the influence of both uniform electric fields and
electron density gradients have a distribution in energy that is
independent of position. This means that the distribution is assumed
to be unaffected by the presence of gradients in the electron dens_ity and
is taken to depend only on the field strength and, of course, on the
pressure and variety of the g‘as. A direct consequence of this is that
the electrons can be characterized by a diffusion coefficient, D, and
a mobility, , which are independent of position., It is this aspect
that has been the basis for the interpretation of many experiments
concerned with the transport properties of electrons in gases, such as
the Townsend type experiment for the measurement of D/pl’ 2 and the

s

time of flight measurements of w. In turn, the analysis of the
measured transport coefficients from these experiments in terms of
electron-atom collision cross sections have also been dependent on this
assumption: ’

The theoretical justification of this assumption must come
from the solution of the Boltzmann transport equation that is appropriate
to electrons under the influence of both electric fields and electron
density gradients. Allis and Allen5 have derived the basic equations for

electrons under these conditions. These authors did indicate certain

formal aspects of the general solution as well as pointing out,
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qualitatively, the approximate nature of the conventional assumption;
however, they did not discuss any specific case fully.

It is the purpose of the present study to (1) investigate the
conditions under which the effect of electron density gradients on the
distribution in energy can be neglected and (2) to obtain solutions of the
Boltamann equation which will demonstrate the specific effects intro-
duced by the gradients. The geometry used in this stpdy, which is
one of the simplest that can serve to illustrate these effects, is the
point source of electrons in an infinite uniform field region. Also
for reasons of simplicity, the collisions between the electrons and
gas atoms are taken to be elastic. In Section II the Boltzmann equation
for the case of an energy independent collision frequency is given and
the approximations involved in assuming the distribution in energy
to be position independent are examined. Also a criterion is developed
for the conditions under which the effect of electron gradients can be
neglected. In Section III the Boltzmann equation, as given in Section II,
ig solved. The resulting solution yields not only the limiting distri-
bution at far distances from the source but also the higher modes which
describe the decay of the initial distribution into this far-distant part.
The far~distant distribution is then compared with the usual position
independent distribution. In Section IV the Boltzmann equation for the
case of an energy independent cross section is given and an approxi-

mate expression is obtained for the distribution at far distance from the



source. This expression is compared with that obtained for constant
collision frequency. In Section V the Townsend D/ experiment is
examined on the basis of this more exact theory and the eirors that
regult from using the conventional interpretation of this experiment

are discussed.

11, GENERAL CONGSIDERATIONS

The average properties of electrons moving through a gas,
e.g., electron density, current density, mean energy, etc., can be
predicted once the electron distribution function, f(};, \N/;) , is known.
The significance of this function is that f(’&, X) d£ dx denotes the
number of electrons at position r in dr and with velocity y in the range
dy. The distribution function in turn satisfies an equation of continuity
in position and velocity space, i.e., the Boltzmann transport equation,
This equation describes the balance that must exist in steady state
between the rate at which electrons enter and leave a given element
of volume, dy, dy in velocity and position space. The flow in position
space results from the velocity of the electrons while in velocity
space it results from their acceleration due both to collisions with
the gas atoms and to the applied field.

There are several approximations commonly made in order

to simplify the integral-differential Boltzmann equation when applied

to electrons. The first is that the distribution function is almost
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spherically symmetric in velocity space and therefore can be adequately
represented by the first two terms of an expansion in spherical har~
monics involving the direction of the velocity. That is, f(ﬁ, ,Y) can be

written as6
\ RKe) i, A
e, y) = £ @)+ £,v) - (V)

The second is that the fractional energy gain or loss by an electron
upon colliding with a gas ato‘m is small. This ig justified in the case
of elastic colligions, to which the present paper is restricted, because
of the small electron to atom mass ratio. With these approximations
the Boltzmann equation reduces to two partial differential equations.
The present discussion will, in addition, be restricted to uniform dc
electric fields and to a constant collision frequency gas. While this
latter restriction will be relaxed further on to include the cage of con-
stant cross section, for the present the case of constant collision fre-
quency can serve best to illusirate the important features of the problem.
When the above approximations and restrictions are taken

lo} 1 6
into account the equations that resuilt for £ andg are

1/2
v B 3/2 99\ 126 1
';/I"éiz'"@"é’[ / (f tETS 6_}“’3(m\} a4

1/2 72
ek
-2 () Hret @ -sge) 0

Vf1+Kz‘=)1/2(vf + eE %—fg)=o : (2)



A A
Here the electric field Eis given by \};3‘\= ~kE, where k is the unit
vector in the z direction, v is the momentum transfer collision frequency,

-~

€ denotes the kinetic energy of the electrons, m and M are the mass
of the electron and the atom respectively, T is the gas temperature,
and S(& €) is the electron source term.

Qualitatively these equations can be explained as follows:
We have assumed that f(‘g, \3‘7) can be represented by the term, 'fo, that
is spherically symmetric in velocity plus the small non~spherical
term, \g\l . O Therefore the Boltzmann equation, which balances
the rates at which electrons enter and leave dr de also breaks into
two parts, the first, Egq. (1), which balances the spherical rates and
the second, Eq. (2), which balances the non-spherical rates. The
first term in (2), which represents the effect of collisions in reducing
the asymmetry in le; x), is balanced by the second and third terms
which represent, respectively, the effect of diffusion and drift in
increasing the asymmetry. The first two terms in (1) reflect, respec-
tively, the fact that electrons can lose and gain energy as a result of
collisions with the gas atoms. The third term represents the net
flow of electrons into d& with energy &€ that occurs when the asym-
metrical part of f varies with position. The fourth term reflects the

fact that the electrons can gain energy from the field and that this

occurs only ‘fhrough the asymmetrical part of f.



The equation that £© must satisfy is obtained by substituting

fl from (2) into (1) and is
N

2

el T e
w2 o€ * o€

2.0 2.0
MeE {1\ 9f 2¢E€ 9°f 2€ 2.0
73 (mv) QZJ} * 3mv. o€z T 3y y« t

= —S('I;\,E)‘ . : (3)

When £° is independent of position, i.e., when the electron density is

uniform, the solution of (3) with S = 0 is given by

Const x exp{ - E/[kT + % (%)2‘]} (4)

Under these conditions the balance, as represented by the first three
terms of (3), is between the electrons losing energy from collisions and
gaining energy from collision and from the field. When fO depends on
position, the additional terms in (3) that involve the spatial gradient of
fo appear. If these terms are assumed to be small in comparison to the
collision terms and to the field term, then an approximate solution to (3)
can be expressed as ©=n (Q F(&£), where n (}1) is the electron density,
whose functional form is as yet undetermined, and F(€ ), which repre-
sents the distribution in energy, is given by (4). The equation that n({)

1/2

must satisfy is obtained by multiplying (3) by € d€ and integrating



over the complete energy range. The resulting equation, which is the

familiar continuity of current equation, can be written, with S =0, as

Y“- (DYn - pE/l:n) =0, (5)

where D and p are given by

1/2 o3/
8W (2 €
P=z [z [ S rere

and

p.:—

(e] 4
8T e 2\1/2 e¥? ar(e)
= deé
h 2 \m v d€
3m

o
A simple criterion can be obtained for conditions under which

the gradient terms can be neglected in comparison to the field term or the

collision terms. If the approximate form for fo is assumed, i.e.,

fo:n({) exp [-QA];T+1/6)] (6>

where B = (3/M) (mv/eE)’-z afd this is substituted into (3) along with the
equation for gz n given by (5), then the relative magnitude of the various

terms can be compared. For this case of constant collision frequency the

last two terms on the left hand side of (3) cancel. The ratio. of the

remaining gradient term to either the energy loss collision term or to
the sum of the collision and field term representing energy gain can be

expressed as
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(7)

In this equation Gav denotes the average electron energy, (3/2)‘(kT+1/B)‘,
GT is the thermal energy of the gas, (3/2) kT, and D/l-L = (kT+l/B)/e .
We see that if €av >GT (high field limit), the gradient terms can be
neglected when the diffusion current in the field direction, D(® n/%) z),
is small in comparison to the drift current, pEn. However as €Aa
approaches €T (low field limit) the gradient terms become less and less
important for a given ratio of diffusion to drift ‘current.

The case of a point source in an infinite uniform field region
can serve to illustrate these points for a specific geometry. The density

for a point source is given by 7
| -1/2 1/2
2 2 E 2 2
n(r)eC (2" +p7) exp{H—ZD Ez - (27 +p7) :l , (8)

where z is the distance from the point source along the field direction
and p is the cylindrical radius. When the density gradient to density
ratio is obtained from this expression and is substituted into (7), the

ratio of terms in the high field limit (l/B"7kT) becomes

3ebz

1 4€6V 2
E I -cos B - cos 8 ,

where 6 is the polar angle from the source. When the factor 4 Sav/SeEz

is small and the point of interest is near the axis (cos 8 ® 1), the gradient
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term can be neglected. Ho.wever, for positions sufficiently off the
axis (cos 8 € 1) and again with 4 €av/3eEz {1, the gradient term
cannot be neglected uﬂder any circumstance.

Thé extension of this type of argument to a constant cross
section gas is straightforward and probably the above ¢onclusions are
a reasonable guide for gases with a more complicated energy dependent

collision frequency.

III. CONSTANT COLLISION FREQUENCY
A. General Solution

The equation for 2, which is given by (3), can be rearranged

to read

O

N

o}
e 2 [/ (f°+(kT+1/B>g_fe+-;_%-)J -

L ge. MSGE)

(eE)zB 2mv €

where B, as defined previously, is kB/M)(vm/éE)z. It is clear that
because of the mixed derivatives in € and z the equation is not separable

in these variables. However, by changing to new independent variables,

“that are, for convenience, made dimensionless, the equation can be put

into a separable form. The new variables are defined as follows, 8
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\ x--BE
1 +™ ’

E=x-—eEBz ,
R=eEBp ,

and with QA= kTB. Then the differential equation becomes

-3/2 9 32 o, 9f°
x/-a—x[x/ )

I+ %
(9)

where yz has been expressed in cylindrical coordinates since £ is to
be calculated under conditions of cylindrical symmetry. It should be
pointed out that in the high field limit, i.e., when (X{&l, the new
variable 3 is simply proportional to the total electron energy, € -eFz.
Since the equation separates in the variables x and g and not in € and
z, it would be a formidable task to satisfy boundary condition on a z-plane.
However, what can be obtained in a straightforward fashion are solutions
for the case of volume sources in an unbounded region. Another case
that can be simply treated, but will not be detailed in the present paper,
is for volume sources in the presence of cylindrical boundaries parallel
to the z axis and on which fo vanishes, e.g., a point source on the axis
of a right cylinder with fo vanishing along the inside surface. However,
the simplest geometry that can be used to illustrate the features of the

distribution when the gradient terms are correctly considered is the
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point source emitting monoenergetic electrons in an unbounded region.

Therefore, Eq. (9) is to be solved with S given, in terms of €.z and

P, as

S 0(€-€)
we (4"T/m)(2€/m)1/2

S(€, z p) = 8(z) (10)
This term represents one electron per second being emitted with energy €°
from the point z = p = o.

The homogeneous form of Eq. (9) can be separated into the

three ordinary differential equations,

x_3/2 _di [xS/Z (P (%) +‘J—ldgxx )]+ BFxy=0 |, (11)
R (R*mﬁRR ) + KPR =0 02)
2
d“z(%) dz(8) 2 :
and ol + ~{KQ+R) +B ) zE&® =0 . (13)
ae? a2 ( ) 2§

The solutions for (12) and (13) that are of interest can be written down

immediately as

=] (KR),

P(R)
© 2 ‘ 1/2\ _~
nd 2(5) = exp(:(—li‘:l+4°((K 2(é(+<>()+s ] )‘:] ’

where Io (KR) is the zero order Bessel function. 3 In order to put (11)

in a recognizable form let
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p="

and F = h{x) exp L— Q%Y') }f] .

Then (11) becomes

,b';w

2
xR (3/2-vx) dh -3/4 (% =1) h=0
dx2 ax

The solution of interest is regular at the origin and is

(52

where F(a| c |z) is the confluent hypergeometric function. 9 Now Eq. (11)
is an eigenvalue equation for p (or v). It is easily shown that the
corresponding eigenfunctions are orthogonal with respect to the density

3/2 X
X

function r(x) = e, i.e.,

(¢9]

3/2 x .

X e F F ,dx=o0 if +
[ y Byl v £y
e}

The eigenvalues and eigenfunctions are found by selecting
the set of y's which made the solution of (l1) quadratically integrable
and orthogonal with respect to the density function. By inspection of
the asymptotic behavior of the confluent hypergeometric func’cion9 the
allowed spectrun for y and the corresponding eigenfunctions can be

found. A part of the set is discrete with
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1+ y
F, (%) =1—\i- [ K X] Lfé/z) (Y/QA X)
(L/2),
‘R

where L is a Laquerre polynomlal

1
R 1+ (4/3)0

£=0,1 2.... o (positive integers) ,

and with the normalization constant N/Q giveri by9

2 (L+ (4/3)2)5/2 2L+ 3/2) 3 (3/z +40)
Np = £

The rest of the set is continuous with

R, (%) = C,, exs [- (—1—15-1—«“-{) g F <3 /4 (%/3/2 l imx) ,

where G is a normalization constant, v =lwand @ is a continuous
variable in the range of 0 —» + 0. It will be assumed that this is a
complete set.

The solutions to Eqgs. (11), (12), and {(13), as given above, will
now be used to build up the solution to Eq. (9). It is convenient first
to. find the Green's function for (9), i.e., to find the function

(ngRl;{)é;ﬁ) that satisfies the equation

329 3/2 da\| 9¢ 3% ;Q_(_g _
A% T ﬂae, 3¢’ FER \RoR) T

-Sx-%0 6(E€-8) Sr-B . (14)

Q)

N
%
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.9
and then to use the expression

£ (x,§,R) = G(x,ﬁ,R‘;c\'%‘ﬁ)[%%Ea dx d§dR (15

to obtain the f° that satisfies (9) for a specific source term. Now the

function G can be expanded in terms of the energy functions, FY , as

G=2a §RE RIF 6,

where the indicated summation is to be taken as a sum over the discrete
spectrum of y plus an integral over the continuous part. When this
expansion is substituted into (14) and the result is multiplied by r(x)l:'Y 1 (%)

and integrated over x, the equation for AY is found to be

) .
A A : A _ - _ _
-BAY +§% +d§—§§£ + (150) lﬁg'ﬁ (R 3R )= - r(x)FY ®) SR-R) &E—E)

(16)

Now AY can be expressed as

/00
A = J U, (8, RE4¥) T_(KR) KdK
o

When this is substituted into (16) and the result multiplied by RIO(K'R)

and integrated over the complete range of R, the equation for UY that
results is

-+ 1+ KA U +§El+o(—ﬁ =-Rr@F, &) LB S(c_E

Y 9% ge? v® LkR) B(%“g,).

The solution to this equation is
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2
U =Rr(x)F ](Eﬁ)exp 3—5 { [E+4°( - lM)K ﬂ ]1§ fl}
Y [1+4 B+ (1+X)K )]l/z :

Therefore, G(x,‘w‘s‘ ,R ‘>_<:, § ,R) is given by

@

G =R exp [g § /zm]z F (%) f dk K JO(Kﬁ) J(KR)
O

1/2
[1 +40((g3+(1+u()1< exp{ [/40( + (B + 1+<>()K)/oa

l%-?l}

By using the integral expression (15);, with the source term givien by (10),

and integrating over the complete range for X, g_ and R the following

. 10
expression is obtained for fo,

)
C N _“eEB x
=5 2 1+°( P [(X ) )/ Z{\Eﬁ OFY i) 7y &

awo M (3/2)

-1/2 1/2
f dK K J_(KR) [40241‘1( ] exp E<—§_4ar?1§o() + K)
i/
1+
% ) ‘ "o '§‘] .

In this expression Cv’ which is the normalization constant for the

3/2

maxwell type distribution, exp E-(BE /(1 +°0I| , is Cv= (mB/ZT{(l +® ))
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and Dv is the diffusion coefficient that corresponds to this distribution,
in this way will be apparent when the far-distant part or lowest mode
of this complete distribution is discussed below.

The integration over K can be carried out immediately by

|

} i.e., DV = (1 +°()/va. The convenience in expressing the constant
i

i

|

|

{

!

’ . - o | 1
i using the following equation given by Watson

|

1

!

i

-1/2 2
dKK IO(KR) (1<:2 + 9‘2) exp[- (K2 + 92) lX’l]

-1/2
= (xz + Rz) / exp [ X + R )1/2]

f The resulting expression for fo is

2 1/2 -1/2
fo_CvNo oEB 1+0()/ 1+ & ¢ )% 4R /
o 4D, 1?(3(2) ™ X 5%

').‘1/2

r 4% B
exp [ /20(] § pL '<4l°-: 1+Y)

if2
l+°( g‘x)+R>/]. (17)

B. Lowest Mode

The lowest mode of the distribution corresponds to the

eigenvalue B = 0(y =1) and to the energy function

F(x)=¢e " LO“/ 2) ) /NO =e " [1(3f2) /NO

O
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This part of the distribution is

1/2 ;
fo_cveEB 1+0(} / -x | 1+™ 2 2] -1/2
o 4TrDV O( e T (g—XO) + R

- x_ %
E) o [ =i

When this is expressed in terms of the variables € , z and p it becomes

-1f2
fo_cveE 1+°< 0(+1 2 e? | /
o ~4WD 1+°{ + (eEp)

el [8 (. €&
SPAT )] TP\ T T )|

T+ ok \’(1+0( )

1/2
(18)

It will be shown below that the higher modes decay exponentially with
distance from the source. Therefore, the lowest mode is the only part
of the complete distribution that is of interest at far distance from the
source. To contrast the behavior of this far-distant part with the usual
distribution as discussed in the previous section, it is best to go to

the limiting cases of low and high field.
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Low Field Limit

For low fields & »1 and foo from (18) becomes

-1/2
(o)« Cv -E/ kT 2 /
o )M‘?l w kTeEB teo |
1/2
eXp[ZkT kTeEB ZkT Z2= kTeEB)

If the position is far from the source, then

eEBz PP (€ - Eo)/kT

o :
and fo becomes

f (? . CV -&/kT z +p —l/Ze <
o %Y1 411’Dv : 2kT

‘ ek 2 2lz
exp —ﬁ(z +p .

In this limit the distribution function agrees with the usual distribution

where the density is given by (8) with D/|.L = kT/e. Of course with
E = 0, the diffusion limit results, i.e.,

f O) = (C /4’i’<D )(zz + pz).-l/2 exp (- E/kT)

° JX>x v v
Therefore, as was shown by the qualitative discussion above, when
the electrons are in equilibrium with the gas the effect of gradient

terms can be neglected. o
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High Field Limit

In this case { € 1 and foo from (18) becomes

CyeE - -1/2
_ 0 ~ -B€ .2 2
£ )@(1 = Dy e EE - €o - eE2) +°((eE(>) ]
.. exp [—(B/ZM)(G- EO - eEz‘)J exp {-(B/Z(X)
‘ | ) ;72
(€ - 60 - e.Ez)‘ + O((eE.e) ] > . (19)

SL/2
Be— 650 - eEz‘)2 +0L(e]3€3)2“l = ‘6— 60 - eEz l

Now

P T2 ]
, 2 €-€o—eEz T

o
and therefore fo can be written as

CyeE -1
o y -BE
f R ———— g €- € - cEz
o >Q<l 4-‘l\'DV ( o)

exp {-(3/20() [(E - 60 - eEz) + \E - eo - eEZ‘] }

exp L—B(eEP)Z/él \€ - eo - eEz l-] , (20)

-1
where only terms that are independent of € or vary as X, = are retained.

It should be apparent from (20) that the fraction of electrons with
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& >€O + 6Bz becomes smaller as® decreaseg while the fraction with
o , . L,

& < eo + eEz is independent of 04.. Therefofe the limiting form for foo

,wi’len o iS Small can be expr:essed as
° C\,e—Be €- é‘?o >-l 2 €- eo
fo )&41 = 4Dy, z 1- oFz exp EeEBP /4ZQ___.e_E;__> | (21)

when € < €O + eEz, and

foo) =0
o<1

when €>€O + eEz.
This distribution must now be contrasted with usual distribution

which, in the same limit, is

fo> = v o7BE (L2 Pz)-l/z exp{__@gg E92+zz)1/2_ ]}
approx. 4’n‘Dv 2 A

(22)
where the density factor is given by (8) with D/p. = 1/eB.

It is clear that since (21) cannot be written as a function of
energy times a function of position, the distribution in energy will
depend on position. To illustrate this new behavior the ratio of (21)
to (22) is plotted in Fig, 1 as functionf’of é/eEz for various values of
@/z. In this plot the parameter 3/2 eEzB, which is shown below to be
equal to Gav/eEz for on-axis points far from the source, is taken to be

0.1. Also, for simplicity, the initial energy eo is taken equal to zero.
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This plot indicates that electrons close to the axis havej a higher
average energy than would be expected while those sufficiently off
axis have a lower average energy. Also there are fewer electrons off
axis than would have been predicted by the usual distribution.

If the position is far from the source, then the quantity
€ /eEz can be considered small in comparispn to unity and taking up
{:;3 first order in this quantity, the distribution from (21), with 60 = 0,

becomes

Cy e ‘
’ - - U+ - 2
K )o<<- P 4Dz Q+ s [Be 1+ (P/22) )]

exp [—eEB 92/42:]

2 .
We immediately see that when € /eEz and (P/z)° can be neglected in
comparison to unity, i.e., for positions far from the source but very
close to the axis, the distribution agrees with (22). This agreement is
consistent with the earlier qualitative considerations. The above expres-
sion can now be used to obtain approximate expressions for the average

. 12

energy and density. These are

€ ~ 3(1+-1/eEBz) | (23)

~ s

Y 28 1+ (P/22)%)
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and

N (1+ 3/2 eEBz) 73 exp [:_g%_z_ (P/Z)zj f . (24)
4mDy z@ + (P/22)° )

These express, in a quantitative way, the behavior displayed in Fig. l.'
Again we see that the average energy for electrons on axis is larger
then would be predicted by the usual distribution and by a factor of

{1+ 1/eEBz). This points out the fact, which was not clear from Fig. 1,
that for positions far distant from the source the average energy of on-
axis electrons goes to the expected value of 3/2 B. Also we see that
electrons sufficiently off the axis have a lower energy than expected.
For example, at an angle of 45C> (@/z = 1) the average energy is down
by 25%, when the term 1/eEBz is neglected. The usual expression for
the density around a point source, as contained in (22), can be expanded
in powers of (P/z)2 to be compared most easily with the above "exact"

expression for the density. Such an expansion results in

L1 =1/2 (‘F’/z)2 + (1/16) eEBz (P/2)" oscr _eEBPz
n)‘approx.‘ 4D, z P 4z

and the ratio of the densitie's can then be expressed as

n)
"exact". .

(1 +1/8 (P/2)% - (1/16) eEBz (P/2)" + 3/2 eEBz)
n) approx.
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This relationship shows that the density for on-axis electrons can be
higher than predicted by the usual theory, while for electrons suffi-
ciently off axis the density can be lower than expected. This is in
agreement with the behavior shown in Fig, 1.

The above fesults would indicate that the average -eiectron
energy would continue to decrease without limit as the position got
further and further off the geometrical axis. The apparent lack of a
lower limit to the average energy arises because the results were obtained
in the limit of very small ®. By returning to the expression for the
lowest mode as given in (19), it can be shown that for large enough @,
such that 0(()>> 2z +‘i( éo - € )/eE), the limiting mean energy is 3kT.

A qualitative explanation as to why the "exact" theory
predicts an average energy that can differ from the usual position inde-
pendent value of 3/2B can be given as follows. The current density at
a given point, which is-made up of the diffusion current plus the drift
current, is a direct measure of how asymmetric the distribution is, i.e.,
a measure of how many more electrons are moving in the direction of
the current than against it. Now the electrons, as a whole, gain energy
from the field only because there are more electrons moving against
the field than with it, In the usual theory in setting up the balance
between the electrons gaining energy from the field and losing energy

from collisions with the gas atoms it is assumed that the contribution

to the electrons gaining energy from that part of the asymmetry corresponding
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to the diffusion current can be neglected. Therefore in the "exact"

theory where the effect of the diffusion part of \fi is taken into account,
it is clear that when the diffusion current adds to the drift c;urrent the
mean energy will be higher and when it subtracts from the drift current
the mean energy will be lower. These conclusions are consistent

with the results for the point source geometry, for in this case, along
the axis the diffusion current aids the drift current and it was here that
the energy was found to be higher, while sufficiently off the axis where
the diffusion current opposes the drift current the energy was found to bg

lower,

C. Higher Modes

A higher mode from (17) )in the high field limit and for

§< X, (e (EO + eEz), is

o C\,eEB NO Xo
f )o«l ] arp,, T (3/2) ° Fy )Ty B 5

»e'xp' [2%1,-8) ] exp[-p(x—8)]

When this is written in terms of the variables € , z and P , it becomes

CveE NO2 BEO -1
; ? _ < o °F (BE)T (BE)(cEz-E+E )
L1 4wDy [* (3/2) ) |

exp C—B eEBz\) exp [{3 B(E - E’o)] exp [ 4(eEezE%PC E )]
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It is evident that the higher modes have a decaying exponential in z.
From the eigenvalue spectrum given above for y, it is seen that the
characteristic distance for the first mode above the fundamental is

1
[31 eEB

= 4,9/eEB

Therefore a distance of the order of 1/eEB must be reached before the
lowest mode becomes the most important term. This explains why the
discussion of the lowest que as representing the far-distant distri-

bution was- carried out for z »1/eEB.

IV. CONSTANT CROSS SECTION

o .
The equation that f must satisfy for a constant cross section

gas 1s
19 |2 9:°\ €M 9 1 a#’)
EEQEEE (f kT’ae> (eEN)® ('Se+ef§=* Sz
M 2 2%° Mn? 2.0 MMS(LE)
tom FN 39z *em ¥ f T some )2 (25)

with W= 1/NG, where N is the gas density and @7, i:s the momentum
transfer cross section. This equation could not be converted to a
separable form by a change to new independent variables as was possible

in the constant VYV case. However, when the equation is taken to the
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high field limit, then such a conversion can be made and, of course,
in the zero field limit it is directly separable. These two limits will

therefore be presented as separate problems.

A. Zero Field Limit !

o

In this limit the equation for £© is

19 | o2(.0 3 £° MM\ 2.0 _AMS
€3€ [6 (f t kT 5E )_i Pem Y T ame V2

This is to be solved with the source function, S, given by (10). The
complete distribution function for this case is obtained by the same

procedure as was used with constant ¥ and is

C @ ,/kT ) 12
© = 4m§ Z e€o (€ /KT) Fy (E/kT) (2 +P
o]

=0

1/z /2
exp[ (ﬁm (zz+P ) ] . (26)

The energy eigenfunction, F 2 (u), are solutions to the separated energy

equation

2
uﬁ-— +(2+u)d—P+(2+..Q)P=0 ,
duz du

where u = € /kT. These functions are discrete and given by

Fg @)=Ly W (/N o
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with ,Q =0,1 2. ... ®. NJL » which is the normalization constant

for the density function r(u) = ue", is given by
2 2 0
Ny =+ [T (¥ 2).

The constant in front is express'ed in terms of Co, the normalization

constant for the maxwell distribution e &/ kT,v

o [ 3/2
o \ 2mwkT

and in terms of Do’ the corresponding diffusion coefficient, given

/2

by D_ =(2 N/3)(2 kT/m ) The lowest mode from (26) is of the

expected form

-1/2

-€/kT , 52 2
(CO/411’DO) e (P +z%)

The higher modes decay exponentially with distanée from the source

with the characteristic length of

>\ —M—jl/z ]

68 m

B. High Field Limit

In Eq. (25), for the limit of high field, the term representing
electrons gaining energy from collisions with the gas atoms can be

neglected and the resulting equation is
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. O\ I 2 o
3_ M £, merX?
ae e [ + ( E)‘) ( eEg—zﬂ - 6m aeaz

: oM o MAS
| wa

ém 2(2m e)1/2

m|.—,

It is clear that because of the mixed derivatives in € and z the equation
cannot be separéted. However, by changing to new dimensionless.

-

variables given by
y=@e)? ,
f‘= 2A(€ - eEz) ,
and 7] =2 eFA P

where A= (1/eEN )(C‘Sm/M)‘l/2 , the equation becomes

@ | fo,9f =) 2) /2 )\
EE’ £ +—a—iy-5] + 72 3% \'% 37 (\7( ) (—2—%\ 41\;11/[18 .

This is now in a separable form. The formal solution to this equation,
which can be obtained by the same procedure that was used for constant=

collision frequency, is

O bq—eEA
- D ; dK KJ (KY})e Pl (Ky )Fp (\,y)

f [ g 5)]
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/2., /2 - ,
for 2 A >S€ and equal to zero for 2 Yo < § . The constant Cq is

the usual normalization constant for the Druyvesteyn energy function,

exp [-(AG)ZJ , and is
4
o o1 (m\¥?
T O (3/4) 2 '
and D is the corresponding diffusion coefficient
N 1/2,
e s ()
T 30M(3/4) \mA :

The functions P‘Q (Kz, y) are the eigenfunctions of the separated energy

equation,
a’r dr -
L 2 2. 1/2 B
v Ay T H ARy ) F =0,

with corresponding eigenvalues L& (K-z). The density funqtion for this
equation is yl/zey.

Because the behavior of this equation at its irregular singular
point at y = o is of a more complicated type than the usual exponential, 1
the exact analytic form of those solution could not be obtained. However,
an approximate expression for the lowest eigenfunction can be obtained

by a perturbation calculation, in a form which is appropriate for expressing

the far-distant behavior of the distribution function.
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The far-distant mode of the complete distribution is given by

0

Cy- eEA

@©
Y - )
fo =W © ﬁKUo(K*z)P‘O(KZLYJ%(KZ» ) expEﬁ(zyol/ ’ %)90:]

@)

We will consider that FO and LPO can be expanded into a power series

2
in K7, i.e.,

F &2, y)=F © g% Wy glp 2
O O O O

+ .

and

Y, (k%) = (Po(o) S A \PO(Z) *.

When these are inserted into the above integral, foo becomes

o CuebA vy, 7 (o) 2, (1)
f‘o =_"T'_Dg—— ® deKIO (Kn)(Fo l(yo)+K Fo (yo)+">

o

(Fo(o)(y) S Fo(l)(y) +...) expE-Kz(ZYol/z -$) (Po(l)]

x exp[- (252 )| (1 gl PP w L

(1-x%2y % -6

. - - »

o]
These series can now be multiplied out and fo can then be expressed as

(3)

e}

+ ...

.)
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o CoebA yo 1/2 (6) ' OO '
fo = ™D e  exp [—(Zyo -S) ('Po ] [dKKIo (K?\) g,
o

1+ Kzgl + K4g2 +. .. ) exp [—(z.yol/2 -S) ¢ lpo(l) (27)

where the g~functions are given by

g,=F. v ) iy

b

(1) (1)
F (yo) F (y)

g, = + ’
! Fo‘(o)(yo) PO(O)(Y)

(2) (2) (1) (1) )
F'™"(y) F '"Ay) F "9 TF "yv) | 2
_lo o Yo o o Yo (Zyl/e—?)@o?,etc...

R W 7 BN 7S ), \
Fo (y) 1:|o (yo) l:‘o (v) Fo (yo)

Eq. (27) ¢an then be integrated term by term using the following bessel.

integral formula given by Watson, 1

dK K 110 (KN exp E— Tl
20

].O RNt K29]= =P [_ 7132/4 8 Ln(O)(ﬁZ/ 4 e)
)

) o
The expression for fo becomes
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v ‘
Cq-eEAe © exp [— (Zyol/2 —§)(Po({l exp E"nz/‘uzyol/z -5) LPO(IU

o 2D (29 V2 _e) "
o} ¢]

(0’(3\/4(2 Vee)p ) 9,1 (a2 2 ) ‘10()
+ +...

.g l "+
7 22 -S [P% ‘%)2(# )2
(28)

If the region of interest is restricted to points that are far distant from

- the source but close to the axis, then the quantities

(P/z)z, € /eEz, and 1/eEAz

can be considered small in comparison to unity. When the Laguerre -
. . e , 1/2 .
polynomials are expanded in (28) and it is recalled that (ZyO —g)

when expressed in terms of € and z is given by
(2y 1/2 -g) =2 eEzA[1 - (€ - € )/eEz]
O . ' O 2

then the terms that are first order in the above small quantities can be

picked out. Therefore, the most important terms in the bracket are

( e 2
A ZeEAzipw 4Q.P KZ) QP ) cEAZ ((P 1))3\-i}

4y ‘Lp(el)jAz _) j
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Thus knowing FO to first order in Kz and (‘Po to second order in K2
results in an exbression for fo that is valid near the axis (first order
in~(e/z)2)and at far distances from the source (first order in l/eEAz).‘
In the appendix, FO and (po are obtained by a perturbation
calculation up to first and second order in Kz, respectively. From
these results the g-functions and the expansion coefficients for &po

can be obtained as
(2 /T(/ -y +vy,) |
(_eo(O) =0 |
LPO(I) _ ,h}/ 2
wa PO e,/ |

Values for an, for n up to four, are given in Table II,of the appendix.

o
Therefore fo can be expressed in terms of &€, z and IO as

2
c. exp ~(a€) 1/2 2

o a ,IY eEAP
£ = D, 2 (1 (€-€ )/eEZ) exp 4z(1 (€-€_VeEz)
3/2 Ve
@A ar g\ eEAz a1 g
, 2% o 4 1 (o !

- (P/Z)' K\ 4 +/ﬁ-)+* 64 (P/Z) +:‘eEzA \ 2 +¢fl/z\+' o
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It is immediately obvious that for points very near the axis but at far
distance from the source, the expression reduces to the usual approxi- -

mate form taken to this same limit, i.e.,

2
(Cq /4WDg2) exp E—(AEA)EJ exp. [— ”—%g—z—

whered¢/D = fny 2 eA.

For points off the axis it is more difficult in this case to
compare (29) with the approximate fo than it was for the case of constant
collision frequency. However, expressions can be obtained for the
average energy, & av’ and for the density, n, which can be compared

with those from the approximate fo. These expressions are

€ L/l E- 0.198 (P/2)% + & 410-]

av ~ [1(3/4) A’ eEAz

and ’

n= (4‘I‘|’D<,.z)—l E- 0.204 (f’/‘z)2 + 2?;%+ .023 eEAz (f’/z)ﬂ

L 1/2 2
X oxp qu__ﬁmﬁ_] _

The integrals involving the 9 function were evaluated by using the
generating function for the Laguerre polynomials. 9 The numerical
constants in these expres sions are accurate to a few per cent. As in
the constant collision frequency case the initial energy, eo’ was

taken to be zero. It is to be noted that eav goes to the expected
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value of ({"(5/4‘)/r'(3/4) A\for points very close to the axis but far
from the source. Also it is apparent from the comparison of these
relationships with those obtained for constant collision frequency,
which are given by (23) and (24), that the qualitative discussion and
conclusions for the case of constant collision frequency will apply

directly to the constant cross section case.

VI. TOWNSEND TYPE D/j. EXPERIMENT

The theory as developed above has demonstrated that in genéral
it is not correct to ascribe to electrons moving through a gas a distri~
bution in energy that is independent éf position. In turn this implies
that such electrons are not characterized by a unique diffusion coeffi-
cient and mobility. However, the assumption of a unique D and p does
form the basis for the usual interpretation of the Townsend type D/p
experiment. L2 Therefore, this type of experiment will be re-examined
in terms of the above theory to find if, under th‘e conditions of the actual
experiments, appreciable errors are introduced by using the usual inter-
pretation. While it is recognized that the above theory does not take
into account the effect of electrode boundaries or of inelastic pl_rocesses
in the gas, both of which are important for an accurate description of the
experiments as actually carried out, still the éssential features of the
D/p. experiment are represented by the point source in a gas in which
only elastic collisions take place. It is therefore reasonable to suppose

that the theory will give at least an estimate of the errors involved.
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W hen the distribution in energy is assumed to be independent
of position fqr a constant collision frequency gas, the expression for
the density normalized with respect to the value on axis can be obtained

from (8). This density ratio, which will be denoted by N, is given by

Bz, (P/z)z)”l/z - ]}

This ratio could just as well be expressed in terms of D/ where

D/ = 1/eB. This expression is taken for the high field limit since
it has been shown earlier that the usual expression for the density is
only in error when the average electron energy is large in comparison
to thermal energies. It is clear that if the ratio of the density at some
point off axis to the density on axis is measured, i.e., if the density
ratio is measured, then B (or D/u) can be calculated. 14

The more accurate description of this experimental situation
has shown that while the density ratio is still given by the above expres-
sion for points very close to the axis, a more correct expression for

points further off the axis is

r

-3/2
N) exace = |1+ V4 eraf] " oo [e—Ef% (P/z)z:(

These expressions can most easily be contrasted by expanding each in
powers of (P/z)2 up to the point that their difference is apparent. This

results in
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N) approx. Q -1/2 (P/z)2+e§gz (9/2)4)exx> -"GEZBE (P/Z)E:‘ (30)

and in
N}exact = (l - 3/8 (P/Z)Z) exp EG—E% (P/z)‘z] . (31)

Typical experimental values for (@/z) and eEBz(= %‘Z‘), which are

also representative of previous measurements,” can be obtained from

the recent work of R, W, Warren and the author. 2 In these measurements
the two experimental tubes that were used differed in z, the distance
from the source to the plane of measurement, and in (@/z). Tablel
gives the range of nEz/D covered in these measurements along with

2 ‘ .
the values of (€ /z)° (two values per tube) for each of the two tubes.

Also given in Table I is the maximum fractional difference in N, i.e.,

_Sﬂ _ N)amra»c. - N) exact

N 196 ’
PProx.

as calculated from (30) and (3l) for each ((o/z‘)z. These figures show
that for a given value of eEBz the density ratio as predicted by the two
different theories can differ appreciably fér typical experimental condi-
tions.

However, the important question is how different is the value

of pE/D as predicted by the two theories for a given N, An expression
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for the fractional difference in D/u (or "é'lg) for a given N can be obtained

by using (30) and (31). This is given by

D/ )approx. - D/ H) exact 8 (D/u) 1 2 1 1 2
) D/p)‘aplprox. D/w  ~ [E(P/Z) /ln(N) - Z(P/Z)

This can be expressed as

——(—MSDI} =1 D _lio/,?
U 2 pEz 4

where 1n (1/N) has been replaced by (HEZ/4D)(P/Z)‘2. Table I gives the
maximum value that this fractional difference can attain. It is clear

from these figures that while the fractional difference in D/ is not as
large as in N, still the difference of the order 2'0% corresponding to

the largest value of (F/z)2 should be experimentally observable. In

the course of the measurements described in Ref, 2, certain inconsis-
tencies did arise using the conventional interpretation of this experiment.
However.- these inconsistencies, which were eventually resolved by an
empirical approach, could not be explained, even qualitatively, by the
results of the present theoretical investigation. Therefore it would
appear that in most cases the experiments have not been appreciably
affected by using the usual interpretation of this experiment and in the
cases where { ?/z)2 was large enough for appreciable deviations to

exist, such deviations were masked by other effects.
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APPENDIX
Lowest Mode Energy Function for Constant T

The energy differential equation for this case.is

2
gL, (1+y)-‘iff+(1-1<2+y1/2(p) F=0.
dyz_ dy

Making the transformation

N 4
F(y) =ée hly) ,

the equation becomes

j
;o dh dh 1/2 2
! C— 4 — —_— 4 - = . . A, L
| Yyt -9yt "7 -k9In=0 (A.1)
We want to obtain the first few terms of a power series expansion in
K2 for “Po and ho’ the lowest eigenvalue and eigenfunction for this

equation. That is, we want to find the first few terms in

Wy gty @y
o o o o) v

and in .Po = (PO“(O) + Kzg(l) + K4 LPO(Z)‘ +....



43

- — Here we have considered (Po to be the eigenvalue which
is a function of Kz. However, in the actual calculation of above
terms it is more convenient to reverse this viewpoint ari(i to consider
Kz‘ the eigenvalue which is a function of ‘-,0 and then to consider
the te‘rm(yl/,z (P ) in (A, 1) as a perturbation. It is convenient to put

(A.1) into a standard quantum mechanical form15 s0 that the usual

perturbation formulas can be used. Eq. (A.l) can then be expressed

as
I_Io KPo"-\;{)H'\"')o=wo \Po i
" where
) g d
Ho=y;}7+(l-y)g;; ,
H'=y1/2 s
LPo:ho ’

and w =K2 .
o)

When 4 is equal to zero, the complete set of discrete, orthonormal

. , 9
eigenfunctions are

_ 1 Oy,
U =L (y)/ns

(o)

where Ln is a Laguerre polynomial with corresponding eigenvalues of

A-2
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E=O3-l,-2;.-¢—n t.o—mt
n

These functions are orthogonal with respect to the density function
e-y.

Using the usual perturbation formulas, "P o and Wo’ to second

order in perturbation theory, are15
2 = (H'no) ?
no= Py - 912
n=1 n

H

QO t
i e, 03 S

where we have explicitly put Eo = 0 and with‘H‘no given by

@

/2 -y
t = ‘
H' f‘y YU U_dy .

o]

The value of H'no can be evaluated with the help of the genérating

function for the Laguerre poly.noAmials9 and this quantity is tabulated.

. in Table II for n up to four.

We can now tumn around and obtain (.Po(w) and L{)o(w) and

these relations are

2 0 (H' . )2
$ v Z —— L.
o Hyo (Hpg) — E 9
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and
\P w ZOO Hno'1
=U_ -7 - U +....
. [
o o Hd'o - En n
The function Ll)o which is normalized with respect to e-y is now

renormalized to yl/ 2 e-y. Then "po and ho can be written in terms

of Kz as

@'/'PP}A ( a, © (y))
n=o

and

Y - 2/ %) Kz'(l -%a) .

The constants an can be expressed in terms of H'no as

4 ZOO (Hlno)2
8= 7r_r ~ n !
n=l
and
2 l - no ‘

forn 21

a =T ;
n ,n.l/z nn!

Values for an are given in Tabley I for n up to four, In summary, the

expansion coefficients for h and (.p are
o] o)



Lp (1) __2
o) ,".1/2

. 2a
‘ (2) ..o
and (Po T2
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CURVE 566064

gfekz

Fig. 1 - The ratio of £° /£° vs,'e/eEz for constant
exact' = approx.

collision frequency. The vertical dashed line indicates

the approximate position of eAV/eEz on the horizontal

axis.



o

48

TABLE I. Maximum Fractional Difference in n and D/u

wEz 32 &n S(D[g) o
D (P, Z) n (/3) D/H (6)
0.005 0.3 0.1
50 - 500 (Long Tube)
0.02 5 0.5
0.24 15 8
2 - 10 (Short Tube) .
0.9 100 22
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TABLE II. Constants for the Perturbation Calculation
n 2H! no/rn«’/a a,

0 ‘1 2 0. 259

1 -1/2 1/2

2 -1/8 1/32

3 -3/48 1/288

4 -15/384 5/12, 288
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accurate for the present purpose,

L. I. Schiff, Quantum Mechanics (McGraw-Hill Book Co., New

York, 1955), Chap. VII.



ERRATA SHEET

"Spatially Dependent Energy Distributions for Electrons Drifting Through a Gas

in a Uniform Electric field" by James H. Parker, Jr. (Scientific Paper

63-928-113-P2)
Page 12
In eq. (9) the term on the left hand side should read (: inx)'
Page 17
The denominator in the first equation at the top of the page should
1/2
read " [} +40L (B + (1 +X) Ké]
Page 18
' In eq. 17 the function F7 (xo) should be inserted after the summation
sign.
Page 20

In line 8 from the top the exponmential term should read

- 1/2
"exp [2;1; (‘22 " (32) ]n‘

Page 25
The inequality on line 11 should read " u}/%>>> z +-L(€‘- E;Veé] "

Page 26
The inequality in bracket on line 13 should read "(or & < 6% + eEz)"



Page 31

The first sentence of the last paragraph should read, "Because the
behavior of this equation near its irregular singular point at y = po requires
a more complicated solution than the usual exponential, the exact analytic . form

of the solutions could not be obtained".

Page 51
At the end of reference 12 replace "1/ L - ((9/2 )2:] " by

B et ] e




